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We report a useful method for facile aerobic photo-oxidative synthesis of o,o-dibromoacetophenones
from aromatic alkynes with 48% aq HBr. This method provides the synthesis of a,0-dibromoacetophenon-
es using inexpensive and easily handled bromine sources, harmless visible light, and molecular oxygen.
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o,a-Dibromoacetophenones are important intermediates in
organic synthesis, and have been used in the synthesis of pharma-
ceutically important heteroaromatics.! Reaction of o,a-dibromo-
acetophenones with zerovalent transition metals produces
ketocarbenoid to afford cyclopropanes by self-condensation or
trapping olefins.? In addition, lithium alkynolates, generated by
the reaction of o,a-dibromoketones with lithium hexamethyldisi-
lazane, react with aldehydes or acid chlorides to give the corre-
sponding unsaturated acids and ynol esters, respectively.?

Generally, o,0-dibromoacetophenones are synthesized from
acetophenones using an excess of molecular bromine,* bromine
source,” or its complex compounds.®~® Furthermore, oxidations of
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aromatic alkynes for the synthesis of o,a-dibromoacetophenones 1 (0.3 mmol) 2
have also been known; however, these methods involve the use - - — oo
of heavy metals® and complex organic compounds‘o or a compli- Entry Bromine source (equiv) Additive (pL) Solvent Yield® (%)
cated operation.!! Due to an increasing demand for more environ- 1 48% aq HBr (2.2) = EtOAc 13
mentally benign synthesis, molecular oxygen has received much 2 oA B 0.2) - GeH(CTl 1z

. i id . it th icall d 3 48% aq HBr (2.2) — Hexane 17
attention as an ultimate oxidant, since it theoretica y produces 2 48% aq HBr (2.2) _ i-Pr,0 17
only water as the endo product and has large atom efficiency than 5 48% aq HBr (2.2) = Benzene 37
that of the other oxidants. With this perspective, we have studied 6 48% aq HBr (2.2) = Acetone 37
the oxidation with molecular oxygen, and have already reported 7 48% aq HBr (2.2) - MeOH 54
the aerobic photo-oxidation of methyl aromatics or alcohols to 8 48% aq HBr (2.2) - MeCN 76

phc 1 ol methy atics 9 48% aq HBr (2.2) H,0 (50) MeCN 83 (81)
the corresponding carboxylic acids in good yield in the presence 10 48% aq HBr (2.2) H,0 (100) MeCN 79
of a catalytic amount of bromine sources.'? In the course of our fur- 11 48% aq HBr (2.1) H,0 (50) MeCN 81 (84)
ther study of this photo-oxidation protocol, we found that aro- 12 48% aq HBr (2.0) H,0 (50) MeCN 83 (78)
matic alkynes are oxidized under the similar conditions to S 43555 &g LB (B 1) S0 (0] pMeoN g
. . . 14 48% aq HBr (2.1) H,0 (50) MeCN Trace®

successfully provide the corresponding o,c-dibromoacetophenon- 15 Br, (2.2) _ MeCN 554
es (Scheme 1). Our method is of interest from a viewpoint of green 16 MgBr,-OEt, (2.2) _ MeCN 50
chemistry because of the use of visible light from a general purpose 17 CBry (2.2) = MeCN 30
fluorescent lamp, molecular oxygen, and easily handled and inex- 13 T_‘;S (55) - Megg ;2
pensive bromine sources such as 48% aq HBr. In this Letter, we re- 20 Nlaér( = g) - MaeN o
port the detailed study of aerobic photo-oxidative syntheses of 21 KBr (2.2') _ MeCN 0

a,oi-dibromoacetophenones from aromatic alkynes.
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3 TH NMR analysis. Numbers in parentheses are isolated yields.
b The reaction was carried out in the dark.

¢ The reaction was carried out under N, atmosphere.

d

o,B-Dibromostyrene (14%) was obtained as by-product.
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Table 2
Aerobic photo-oxidative syntheses of o,a-dibromoacetophenones from aromatic alkynes
05, hv (VIS)
48% aq HBr (2.1 equiv)
substrate H20 (50 ul) product
(0.3 mmol) MeCN (5 mL)
Entry Substrate Time (h) Product Yield® (%)
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2 Isolated yields.
> With 48% aq HBr (2.3 equiv).
¢ With H,0 (100 pL).
9 With EtOAc (5 mL) as solvent.
o) Oy, hv (VIS) o)

Table 1 shows the reaction conditions for the aerobic photo-oxi- Br 48% aq HBr (1.0 equiv) Br
dative synthesis of o,a-dibromoacetophenone (2) from phenyl- H,0 (S0 uL) B+ 35%%
acetylene (1) as a test substrate. Among the solvents and MeCN (5mL). 8 h
bromine sources examined, MeCN and 48% aq HBr were found to 3 (0.3 mmol) 218%
afford the desired product 2 most efficiently (entries 1-8 and o} Og, hiv (VIS) o}

15-21), and addition of H,0 increased the yield of 2 (entry 9). Br BE ((1)'(()5%““:_‘;) Br

Among our detailed examinations, addition of H,O (50 pL) and 2 s Br * 380%
48% aq HBr (2.1 equiv) was the most suitable reaction condition MeCN (S mL), 8 h

(entries 9-12). The fact that 2 was not obtained without irradiation 3 (0.3 mmol) 0y, hv (VIS) 20%

and molecular oxygen indicates their essentiality for this reaction Br 48%aq HBr (1.1 equiv) i

(entries 13 and 14). \Yad H,0 (5 0uL) Br

Table 2 presents the scope and limitation of the aerobic photo- MeCN (5mL), 10 h Br
oxidative synthesis of o,0-dibromoacetophenones from aromatic 4(0.3 mmol) 229%

alkynes under the optimized reaction condition.'® Generally, the
corresponding o,a-dibromoacetophenones are obtained in good

Scheme 2. Study of reaction mechanism.
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Scheme 3. Plausible path of aerobic photo-oxidative synthesis of o,0-dibromoacetophenones.

yields regardless of an electron-donating or electron-withdrawing
group on the benzene ring (entries 1-6). Interestingly, methyl
groups on benzene ring are inert under the oxidation condition
(entry 4).'?"< Disubstituted aromatic alkynes, such as 1-phenyl-
1-propyne and 1-phenyl-1-hexyne produce the corresponding
a,oi-dibromoketones in good yields (entries 7 and 8). Moreover,
2-ethynylpyridine, a heterocyclic compound, is also converted to
the corresponding a,0-dibromoketones in modest yield (entry 9).
Aliphatic alkyne, such as 1-decyne, affords the corresponding
a,oi-dibromoketone with a low yield when EtOAc is used as a sol-
vent (entry 10).

To clarify the reaction mechanism, aerobic photo-oxidations of
phenacyl bromide (3) in the presence of 1 equiv of 48% aq HBr or
Br, were examined, and the desired o,o-dibromoacetophenone
(2) was obtained in low yield or not detected, respectively,
(Scheme 2). These results suggest that phenacyl bromide (3) is
not a direct intermediate in this reaction. Furthermore, the reac-
tion of B-bromostyrene (4) under the same conditions afforded 2
in 29% yield (Scheme 2). In addition, we infer that the yellow color
of the reaction mixture indicates the formation of bromine in the
reaction.

Scheme 3 shows a plausible path of this oxidation, which is pos-
tulated by considering all the results mentioned above and the
necessity of molecular oxygen and continuous irradiation in this
reaction. We assume that the vinyl radical species 5 is generated
by the addition of bromine radical to aromatic alkynes. The bro-
mine radical is formed under the irradiation of visible light from
bromine generated by aerobic photo-oxidation of the HBr. Positive
evidence remains elusive; however, we think there are two paths
(path a and b) which involve the formation of both peroxy radical
species 6 and B-bromostyrene (4). Peroxy radical species 6 ab-
stracts the hydrogen from HBr or solvent, and hydroperoxide 7 is
reduced by HBr to provide bromoenol 8. Finally, molecular bro-
mine traps 8 to afford o,o-dibromoacetophenone (2) (path a). On
the other hand, benzyl radical species 9 is generated by the addi-
tion of bromine radical to p-bromostyrene (4). The radical species
9 traps molecular oxygen to afford hydroperoxide 11 via peroxy
radical species 10. Finally, dehydration of 11 affords o,a-dibromo-

acetophenone (path b). We think that this reaction mainly pro-
ceeds through path a, since o,a-dibromoacetophenone (2) was
produced only in 29% yield when using B-bromostyrene (4) as
the substrate (Scheme 2).

In conclusion, we have developed the aerobic photo-oxidative
syntheses of o,a-dibromoacetophenones in the presence of 48%
aq HBr. This method is advantageous from the viewpoint of green
chemistry and organic synthesis due to using inexpensive bromine
sources, harmless visible light irradiated from a general purpose
fluorescent lamp, and molecular oxygen. Further application of this
photo-oxidation to other reactions is now in progress in our
laboratory.
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